Category Archives: Symptoms

Fibrodysplasia Ossificans Progressiva

What is Fibrodysplasia Ossificans Progressiva (FOP)?
One of the rarest, most disabling genetic conditions known to medicine, it causes bone to form in muscles, tendons, ligaments and other connective tissues. Bridges of extra bone develop across joints, progressively restricting movement and forming a second skeleton that imprisons the body in bone. There are no other known examples in medicine of one normal organ system turning into another.

An example of the typical progression of FOP:
Spontaneous flare-ups of the disease arise in defined temporal and spatial patterns, resulting in ribbons and sheets of bone that fuse the joints of the axial and appendicular skeleton, entombing a patient in a skeleton of heterotopic bone. These photos show an individual with FOP through his lifetime.

How would understanding the cause of bone formation in FOP help others?
The information obtained from studying this disease will have far reaching implications for the treatment of common disorders such as fractures, osteoporosis, hip replacement surgery, and other forms of heterotopic ossification that occur in trauma and burn victims.

Demographics of FOP:

  • Genetic disease affecting 1 in 2 million people
  • No ethnic, racial, or gender patterns
  • 800 confirmed cases across the globe
  • 285 known cases in the United States

Clinical Characteristics of FOP:

  • Characteristic malformations of the great toe
  • Flare-ups occur spontaneously or following bodily trauma such as: childhood immunizations, falls while playing, viral illnesses
  • Misdiagnosed in a majority of cases as cancer
  • Surgery makes the condition worse
  • There are no effective treatments

Finding a Cure and Treatment for FOP:

  • Researchers at the University of Pennsylvania School of Medicine, the only laboratory in the US dedicated to FOP research, announced the Discovery of the FOP Gene in Nature Genetics in April 2006.
  • 10,000 sq. ft. of shared research space in the Department of Orthopaedic Surgery
  • 3 principal investigators with 15 post-doctoral fellows, students, scientists, and staff
  • Funds spent on research – Approx. $1.5 million/year
  • 75% from FOP family fundraising and donations
  • 25% from institutional support (NIH/NIAMS, Orthopaedic Research and Education Foundation)

Fibromyalgia

What Is Fibromyalgia?
Fibromyalgia is a disorder that causes muscle pain and fatigue (feeling tired). People with fibromyalgia have “tender points” on the body. Tender points are specific places on the neck, shoulders, back, hips, arms, and legs. These points hurt when pressure is put on them.

People with fibromyalgia may also have other symptoms, such as:

  • Trouble sleeping
  • Morning stiffness
  • Headaches
  • Painful menstrual periods
  • Tingling or numbness in hands and feet
  • Problems with thinking and memory (sometimes called “fibro fog”).

A person may have two or more coexisting chronic pain conditions. Such conditions can include chronic fatigue syndrome, endometriosis, fibromyalgia, inflammatory bowel disease, interstitial cystitis, temporomandibular joint dysfunction, and vulvodynia. It is not known whether these disorders share a common cause.

What Causes Fibromyalgia?
The causes of fibromyalgia are unknown. There may be a number of factors involved. Fibromyalgia has been linked to:

  • Stressful or traumatic events, such as car accidents
  • Repetitive injuries
  • Illness
  • Certain diseases.

Fibromyalgia can also occur on its own.

Some scientists think that a gene or genes might be involved in fibromyalgia. The genes could make a person react strongly to things that other people would not find painful.

Who Is Affected by Fibromyalgia?
Scientists estimate that fibromyalgia affects 5 million Americans 18 or older. Between 80 and 90 percent of people diagnosed with fibromyalgia are women. However, men and children also can have the disorder. Most people are diagnosed during middle age.

People with certain other diseases may be more likely to have fibromyalgia. These diseases include:

  • Rheumatoid arthritis
  • Systemic lupus erythematosus (commonly called lupus)
  • Ankylosing spondylitis (spinal arthritis).

Women who have a family member with fibromyalgia may be more likely to have fibromyalgia themselves.

How Is Fibromyalgia Treated?
Fibromyalgia can be hard to treat. It’s important to find a doctor who is familiar with the disorder and its treatment. Many family physicians, general internists, or rheumatologists can treat fibromyalgia. Rheumatologists are doctors who specialize in arthritis and other conditions that affect the joints or soft tissues.

Fibromyalgia treatment often requires a team approach. The team may include your doctor, a physical therapist, and possibly other health care providers. A pain or rheumatology clinic can be a good place to get treatment.

What Can I Do to Try to Feel Better?
There are many things you can do to feel better, including:

  • Taking medicines as prescribed
  • Getting enough sleep
  • Exercising
  • Eating well
  • Making work changes if necessary.

What Research Is Being Done on Fibromyalgia?
The NIAMS sponsors research to help understand fibromyalgia and find better ways to diagnose, treat, and prevent it. Researchers are studying:

  • Why people with fibromyalgia have increased sensitivity to pain.
  • Medicines and behavioral treatments.
  • Whether there is a gene or genes that make a person more likely to have fibromyalgia.
  • The use of imaging methods, such as magnetic resonate imaging (MRI), to better understand fibromyalgia.
  • Inflammation in the body and its relationship to fibromyalgia.
  • Nondrug therapies to help reduce pain.
  • Methods to improve sleep in people with fibromyalgia.

Osteogenesis Imperfecta

Definition
Osteogenesis imperfecta (OI) is a genetic disorder characterized by bones that break easily, often from little or no apparent cause. A classification system of different types of OI is commonly used to help describe how severely a person with OI is affected. For example, a person may have just a few or as many as several hundred fractures in a lifetime.

Prevalence
While the number of people affected with OI in the United States is unknown, the best estimate suggests a minimum of 20,000 and possibly as many as 50,000.

Diagnosis
OI is caused by genetic defects that affect the body’s ability to make strong bones. In dominant (classical) OI, a person has too little type I collagen or a poor quality of type I collagen due to a mutation in one of the type I collagen genes. Collagen is the major protein of the body’s connective tissue. It is part of the framework that bones are formed around. In recessive OI, mutations in other genes interfere with collagen production. The result in all cases is fragile bones that break easily.

It is often, though not always, possible to diagnose OI based solely on clinical features. Clinical geneticists can also perform biochemical (collagen) or molecular (DNA) tests that can help confirm a diagnosis of OI in some situations. These tests generally require several weeks before results are known. Both the collagen biopsy test and DNA test are thought to detect almost 90% of all type I collagen mutations.

A positive type I collagen study confirms the diagnosis of dominant OI, but a negative result could mean that either a collagen type I mutation is present but was not detected or the patient has a form of the disorder that is not associated with type 1 collagen mutations or the patient has a recessive form of OI. Therefore, a negative type I collagen study does not rule out OI. When a type I collagen mutation is not found, other DNA tests to check for recessive forms are available.

Clinical Features
The characteristic features of OI vary greatly from person to person, even among people with the same type of OI, and even within the same family. Not all characteristics are evident in each case. The majority of cases of OI (possibly 85-90 %) are caused by a dominant mutation in a gene coding for type I collagen (Types I, II, III, and IV in the following list). Types VII and VIII are newly identified forms that are inherited in a recessive manner. The genes causing these two types have been identified. Types V and VI do not have a type 1 collagen mutation, but the genes causing them have not yet been identified. The general features of each known type of OI are as follows:

Type I

  • Most common and mildest type of OI.
  • Bones fracture easily. Most fractures occur before puberty.
  • Normal or near-normal stature.
  • Loose joints and muscle weakness.
  • Sclera (whites of the eyes) usually have a blue, purple, or gray tint.
  •  Triangular face.
  • Tendency toward spinal curvature.
  • Bone deformity absent or minimal.
  • Brittle teeth possible.
  • Hearing loss possible, often beginning in early 20s or 30s.
  • Collagen structure is normal, but the amount is less than normal.

Type II

  • Most severe form.
  • Frequently lethal at or shortly after birth, often due to respiratory problems.
  • Numerous fractures and severe bone deformity.
  • Small stature with underdeveloped lungs.
  • Tinted sclera.
  • Collagen improperly formed.

Type III

  • Bones fracture easily. Fractures often present at birth, and x-rays may reveal healed fractures that occurred before birth.
  • Short stature.
  • Sclera have a blue, purple, or gray tint.
  • Loose joints and poor muscle development in arms and legs.
  • Barrel-shaped rib cage.
  • Triangular face.
  • Spinal curvature.
  • Respiratory problems possible.
  • Bone deformity, often severe.
  • Brittle teeth possible.
  • Hearing loss possible.
  • Collagen improperly formed.

Type IV

  • Between Type I and Type III in severity.
  • Bones fracture easily. Most fractures occur before puberty.
  • Shorter than average stature.
  • Sclera are white or near-white (i.e. normal in color).
  • Mild to moderate bone deformity.
  • Tendency toward spinal curvature.
  • Barrel-shaped rib cage.
  • Triangular face.
  • Brittle teeth possible.
  • Hearing loss possible.
  • Collagen improperly formed.

By studying the appearance of OI bone under the microscope, investigators noticed that some people who are clinically within the Type IV group had a distinct pattern to their bone. When they reviewed the full medical history of these people, they found that groups had other features in common. They named these groups Types V and VI OI. The mutations causing these forms of OI have not been identified, but people in these two groups do not have mutations in the type I collagen genes.

Type V

  • Clinically similar to Type IV in appearance and symptoms of OI.
  • A dense band seen on x-rays adjacent to the growth plate of the long bones.
  • Unusually large calluses (hypertrophic calluses) at the sites of fractures or surgical procedures. (A callus is an area of new bone that is laid down at the fracture site as part of the healing process.)
  • Calcification of the membrane between the radius and ulna (the bones of the forearm). This leads to restriction of forearm rotation.
  • White sclera.
  • Normal teeth.
  • Bone has a “mesh-like” appearance when viewed under the microscope.
  • Dominant inheritance pattern

Type VI

  • Clinically similar to Type IV in appearance and symptoms of OI.
  • The alkaline phosphatase (an enzyme linked to bone formation) activity level is slightly elevated in OI Type VI. This can be determined by a blood test.
  • Bone has a distinctive “fish-scale” appearance when viewed under the microscope.
  • Diagnosed by bone biopsy.
  • Whether this form is inherited in a dominant or recessive manner is unknown, but researchers believe the mode of inheritance is most likely recessive.
  • Eight people with this type of OI have been identified.

Recessive Forms of OI
After years of research, two forms of OI that are inherited in a recessive manner were discovered in 2006. Both types are caused by genes that affect collagen formation. These forms provide information for people who have severe or moderately severe OI but who do not have a primary collagen mutation.

Type VII

  • The first described cases resemble Type IV OI in many aspects of appearance and symptoms.
  • In other instances the appearance and symptoms are similar to Type II lethal OI, except infants had white sclera, a small head and a round face.
  • Short stature.
  • Short humerus (arm bone) and short femur (upper leg bone)
  • Coxa vera is common (the acutely angled femur head affects the hip socket).
  • Results from recessive inheritance of a mutation to the CRTAP (cartilage-associated protein) gene. Partial function of CRTAP leads to moderate symptoms while total absence of CRTAP was lethal in all 4 identified cases.

Type VIII

  • Resembles lethal Type II or Type III OI in appearance and symptoms except that infants have white sclera.
  • Severe growth deficiency.
  • Extreme skeletal under mineralization.
  • Caused by a deficiency of P3H1 (Prolyl 3-hydroxylase 1) due to a mutation to the LEPRE1 gene.

Inheritance Factors
Most cases of OI (85-90%) are caused by a dominant genetic defect. This means that only one copy of the mutation carrying gene is necessary for the child to have OI. Children who have the dominant form of OI have either inherited it from a parent or, when the parent does not have OI, as a spontaneous mutation.

Approximately 10-15 percent of cases of OI are the result of a recessive mutation. In this situation, the parents do not have OI, but both carry the mutation in their genes. To inherit recessive OI the child must receive a copy of the mutation from both parents.

When a child has recessive OI, there is a 25 percent chance per pregnancy that the parents will have another child with OI. Siblings of a person with a recessive form of OI have a 50 percent chance of being a carrier of the recessive gene. DNA testing is available to help parents and siblings determine if they are carriers of this type of gene mutation.

A person with a form of OI caused by a dominant mutation has a 50 percent chance of passing on the disorder to each of his or her children. If one parent has OI because of a recessive mutation, 100 percent of their children will be carriers of the recessive OI mutation. Whether any of these children will have OI will depend on their inheritance from the other parent. Genetic counselors can help people with OI and their family members further understand OI genetics and the possibility of recurrence, and assist in prenatal diagnosis for those who wish to exercise that option. For more information on OI inheritance, see the OI Foundation fact sheet titled “Genetics.”

Treatment
There is not yet a cure for OI. Treatment is directed toward preventing or controlling the symptoms, maximizing independent mobility, and developing optimal bone mass and muscle strength. Care of fractures, extensive surgical and dental procedures, and physical therapy are often recommended for people with OI. Use of wheelchairs, braces, and other mobility aids is common, particularly (although not exclusively) among people with more severe types of OI.

People with OI are encouraged to exercise as much as possible to promote muscle and bone strength, which can help prevent fractures. Swimming and water therapy are common exercise choices for people with OI, as water allows independent movement with little risk of fracture. For those who are able, walking (with or without mobility aids) is excellent exercise. People with OI should consult their physician and/or physical therapist to discuss appropriate and safe exercise.

Children and adults with OI will also benefit from maintaining a healthy weight, eating a nutritious diet, and avoiding activities such as smoking, excessive alcohol and caffeine consumption, and taking steroid medications — all of which may deplete bone and make bones more fragile. For more information on nutrition, see the OI Foundation fact sheet titled “Nutrition.”

A surgical procedure called “rodding” is frequently considered for people with OI. This treatment involves inserting metal rods through the length of the long bones to strengthen them and prevent and/or correct deformities. For more information, see the OI Foundation’s fact sheet on “Rodding Surgery.”

Several medications and other treatments are being explored for their potential use to treat OI. These include growth hormone treatment, treatment with intravenous and oral drugs called bisphosphonates, an injected drug called teriparatide (for adults only) and gene therapies. It is not clear if people with recessive OI will respond in the same manner as people with dominant OI to these treatments. The OI Foundation provides current information on research studies, as well as information about participating in clinical trials.

Prognosis
The prognosis for a person with OI varies greatly depending on the number and severity of symptoms. Respiratory failure is the most frequent cause of death for people with OI, followed by accidental trauma. Despite numerous fractures, restricted physical activity, and short stature, most adults and children with OI lead productive and successful lives. They attend school, develop friendships and other relationships, have careers, raise families, participate in sports and other recreational activities and are active members of their communities.

Agust is SMA Awareness Month

 Agust is SMA Awareness Month 2014

August is SMA Awareness month and families and friends around the country are joining together to help increase awareness—not only of SMA, but also of our hope for a treatment and cure.

What is Spinal Muscular Atrophy?
Spinal Muscular Atrophy (SMA) Types I, II, and III belong to a group of hereditary diseases that cause weakness and wasting of the voluntary muscles in the arms and legs of infants and children. The disorders are caused by an abnormal or missing gene known as the survival motor neuron gene 1 (SMN1), which is responsible for the production of a protein essential to motor neurons. Without this protein, lower motor neurons in the spinal cord degenerate and die. The type of SMA (I, II, or III) is determined by the age of onset and the severity of symptoms. Type I (also known as Werdnig-Hoffman disease, or infantile-onset SMA) is evident at birth or within the first few months. Symptoms include floppy limbs and trunk, feeble movements of the arms and legs, swallowing and feeding difficulties, and impaired breathing. Type II (the intermediate form) usually begins 6 and 18 months of age. Legs tend to be more impaired than arms. Children with Type II may able to sit and some may be able to stand or walk with help. Symptoms of Type III (also called Kugelberg-Welander disease) appear between 2 and 17 years of age and include difficulty running, climbing steps, or rising from a chair.  The lower extremities are most often affected.  Complications include scoliosis and chronic shortening of muscles or tendons around joints.

Is there any treatment?
There is no cure for SMA. Treatment consists of managing the symptoms and preventing complications.

What is the prognosis?
The prognosis is poor for babies with SMA Type I. Most die within the first two years. For children with SMA Type II, the prognosis for life expectancy or for independent standing or walking roughly correlates with how old they are when they first begin to experience symptoms – older children tend to have less severe symptoms  Life expectancy is reduced but some individuals live into adolescence or young adulthood.  Individuals with SMA type III may be prone to respiratory infections but with care may have a normal lifespan.

What research is being done?
Between 2003 and 2012, the NINDS piloted the Spinal Muscular Atrophy Project to expedite therapeutics development for this hereditary neurodegenerative disease. The Project was designed to accelerate the research process by identifying drugs that increase the level of SMN protein in cultured cells, so that they could be used as potential leads for further drug discovery and clinical testing. Read more about the history of this pioneering effort and how it led to collaboration with several pharmaceutical and biotechnology companies.

Friedreich’s Ataxia

Friedreich’s ataxia (also called FA or FRDA) is a rare inherited disease that causes nervous system damage and movement problems. It usually begins in childhood and leads to impaired muscle coordination (ataxia) that worsens over time. The disorder is named after Nicholaus Friedreich, a German doctor who first described the condition in the 1860s.

In Friedreich’s ataxia the spinal cord and peripheral nerves degenerate, becoming thinner. The cerebellum, part of the brain that coordinates balance and movement, also degenerates to a lesser extent. This damage results in awkward, unsteady movements and impaired sensory functions. The disorder also causes problems in the heart and spine, and some people with the condition develop diabetes. The disorder does not affect thinking and reasoning abilities (cognitive functions).

Friedreich’s ataxia is caused by a defect (mutation) in a gene labeled FXN. The disorder is recessive, meaning it occurs only in someone who inherits two defective copies of the gene, one from each parent. Although rare, Friedreich’s ataxia is the most common form of hereditary ataxia, affecting about 1 in every 50,000 people in the United States. Both male and female children can inherit the disorder.

What are the signs and symptoms?
Symptoms typically begin between the ages of 5 and 15 years, although they sometimes appear in adulthood and on rare occasions as late as age 75. The first symptom to appear is usually gait ataxia, or difficulty walking. The ataxia gradually worsens and slowly spreads to the arms and the trunk. There is often loss of sensation in the extremities, which may spread to other parts of the body. Other features include loss of tendon reflexes, especially in the knees and ankles. Most people with Friedreich’s ataxia develop scoliosis (a curving of the spine to one side), which often requires surgical intervention for treatment.

Dysarthria (slowness and slurring of speech) develops and can get progressively worse. Many individuals with later stages of Friedreich’s ataxia develop hearing and vision loss.

Other symptoms that may occur include chest pain, shortness of breath, and heart palpitations. These symptoms are the result of various forms of heart disease that often accompany Friedreich’s ataxia, such as hypertrophic cardiomyopathy (enlargement of the heart), myocardial fibrosis (formation of fiber-like material in the muscles of the heart), and cardiac failure. Heart rhythm abnormalities such as tachycardia (fast heart rate) and heart block (impaired conduction of cardiac impulses within the heart) are also common.

About 20 percent of people with Friedreich’s ataxia develop carbohydrate intolerance and 10 percent develop diabetes. Most individuals with Friedreich’s ataxia tire very easily and find that they require more rest and take a longer time to recover from common illnesses such as colds and flu.

The rate of progression varies from person to person. Generally, within 10 to 20 years after the appearance of the first symptoms, the person is confined to a wheelchair, and in later stages of the disease individuals may become completely incapacitated.

Friedreich’s ataxia can shorten life expectancy, and heart disease is the most common cause of death. However, some people with less severe features of Friedreich’s ataxia live into their sixties, seventies, or older.

How is Friedreich’s ataxia diagnosed?
A diagnosis of Friedreich’s ataxia requires a careful clinical examination, which includes a medical history and a thorough physical exam, in particular looking for balance difficulty, loss of proprioception (joint sensation), absence of reflexes, and signs of neurological problems. Genetic testing now provides a conclusive diagnosis. Other tests that may aid in the diagnosis or management of the disorder include:

  • electromyogram (EMG), which measures the electrical activity of muscle cells,
  • nerve conduction studies, which measure the speed with which nerves transmit impulses,
  • electrocardiogram (ECG), which gives a graphic presentation of the electrical activity or beat pattern of the heart,
  • echocardiogram, which records the position and motion of the heart muscle,
  • blood tests to check for elevated glucose levels and vitamin E levels, and
  • magnetic resonance imaging (MRI) or computed tomography (CT) scans, tests which provide brain and spinal cord images that are useful for ruling out other neurological conditions.

How is Friedreich’s ataxia inherited?
Friedreich’s ataxia is an autosomal recessive disease, meaning individuals only develop symptoms if they inherit two copies of the defective FXN gene, one from their father and one from their mother. A person who has only one abnormal copy of the gene is called a carrier. A carrier will not develop the disease but could pass the gene mutation on to his or her children. If both parents are carriers, their children will have a 1 in 4 chance of having the disease and a 1 in 2 chance of inheriting one abnormal gene that they, in turn, could pass on to their children. About one in 90 Americans of European ancestry carries an abnormal FXN gene.

In 1996, an international research team identified the Friedreich’s ataxia gene on chromosome 9. The FXN gene codes for production of a protein called “frataxin.” In the normal version of the gene, a sequence of DNA (labeled “GAA”) is repeated between 7 and 22 times. In the defective FXN gene, the repeat occurs over and over again—hundreds, even up to a thousand times.

This abnormal pattern, called a triplet repeat expansion, has been implicated as the cause of several dominantly inherited diseases, but Friedreich’s ataxia is the only known recessive genetic disorder caused by the problem. Almost all people with Friedreich’s ataxia have two copies of this mutant form of FXN, but it is not found in all cases of the disease. About two percent of affected individuals have other defects in the FXN gene that are responsible for causing the disease.

The triplet repeat expansion greatly disrupts the normal production of frataxin. Frataxin is found in the energy-producing parts of the cell called mitochondria. Research suggests that without a normal level of frataxin, certain cells in the body (especially peripheral nerve, spinal cord, brain and heart muscle cells) cannot effectively produce energy and have been hypothesized to have a buildup of toxic byproducts leading to what is called “oxidative stress.” It also may lead to increased levels of iron in the mitochondria. When the excess iron reacts with oxygen, free radicals can be produced. Although free radicals are essential molecules in the body’s metabolism, they can also destroy cells and harm the body. Research continues on this subject (see section on “What research is being done?”).

Can Friedreich’s ataxia be cured or treated?
As with many degenerative diseases of the nervous system, there is currently no cure or effective treatment for Friedreich’s ataxia. However, many of the symptoms and accompanying complications can be treated to help individuals maintain optimal functioning as long as possible. Doctors can prescribe treatments for diabetes, if present; some of the heart problems can be treated with medication as well. Orthopedic problems such as foot deformities and scoliosis can be corrected with braces or surgery. Physical therapy may prolong use of the arms and legs. Advances in understanding the genetics of Friedreich’s ataxia are leading to breakthroughs in treatment. Research has moved forward to the point where clinical trials of proposed treatments are presently occurring for Friedreich’s ataxia.

What services are useful to Friedreich’s ataxia patients and their families?
Genetic testing is essential for proper clinical diagnosis, and can aid in prenatal diagnosis and determining a person’s carrier status. Genetic counselors can help explain how Friedreich’s ataxia is inherited. Psychological counseling and support groups for people with genetic diseases may also help affected individuals and their families cope with the disease.

A primary care physician can screen people for complications such as heart disease, diabetes and scoliosis, and can refer individuals to specialists such as cardiologists, physical therapists, and speech therapists to help deal with some of the other associated problems.

Support and information for families is also available through a number of private organizations. These groups can offer ways to network and communicate with others affected by Friedreich’s ataxia. They can also provide access to patient registries, clinical trials information, and other useful resources.

What research is being done?
Within the Federal government the National Institute of Neurological Disorders and Stroke (NINDS), a component of the National Institutes of Health (NIH), has primary responsibility for sponsoring research on neurological disorders. As part of this mission, the NINDS conducts research on Friedreich’s ataxia and other forms of inherited ataxias at its facilities at the NIH and supports additional studies at medical centers throughout the United States. Several nonprofit organizations also provide substantial support research (see the section on “Where can I get more information?”).

Researchers are optimistic that they have begun to understand the causes of the disease, and work has begun to develop effective treatments and prevention strategies for Friedreich’s ataxia. Scientists have been able to create various models of the disease in yeast and mice which have facilitated understanding the cause of the disease and are now being used for drug discovery and the development of novel treatments.

Studies have revealed that frataxin is an important mitochondrial protein for proper function of several organs. Yet in people with the disease, the amount of frataxin in affected cells is severely reduced. It is believed that the loss of frataxin makes the nervous system, heart, and pancreas particularly susceptible to damage from free radicals (produced when the excess iron reacts with oxygen). Once certain cells in these tissues are destroyed by free radicals they cannot be replaced. Nerve and muscle cells also have metabolic needs that may make them particularly vulnerable to this damage. Free radicals have been implicated in other degenerative diseases such as Parkinson’s and Alzheimer’s diseases.

Based upon this information, scientists and physicians have tried to reduce the levels of free radicals, also called oxidants, using treatment with “antioxidants.” Initial clinical studies in Europe suggested that antioxidants like coenzyme Q10, vitamin E, and idebenone may offer individuals some limited benefit. However, recent clinical trials in the United States and Europe have not revealed effectiveness of idebenone in people with Friedreich’s ataxia, but more powerful modified forms of this agent and other antioxidants are in trials at this time. There is also a clinical trial to examine the efficacy of selectively removing excess iron from the mitochondria.

Scientists also are exploring ways to increase frataxin levels through drug treatments, genetic engineering and protein delivery systems. Several compounds that are directed at increasing levels of frataxin may be brought to clinical trials in the near future. To check for current trials, visit http://www.clinicaltrials.gov. Additional information is available from the groups listed in the following section.

Armed with what they currently know about frataxin and Friedreich’s ataxia, scientists are working to better define fraxatin’s role, clarify how defects in iron metabolism may be involved in the disease process, and explore new therapeutic approaches for therapy.