Tag Archives: symptoms

Fryns Syndrome

Fryns syndrome is an extremely rare inherited disorder characterized by multiple abnormalities that are present at birth (congenital). Characteristic symptoms and physical findings include protrusion of part of the stomach and/or small intestines into the chest cavity (diaphragmatic hernia), abnormalities of the head and face area (craniofacial region), and underdevelopment of the ends of the fingers and toes (distal digit hypoplasia). Additional symptoms include underdevelopment (hypoplasia) of the lungs, incomplete closure of the roof of the mouth (cleft palate), cardiac defects, and varying degrees of mental retardation. Fryns syndrome is inherited as an autosomal recessive trait.

Symptoms
Fryns syndrome is associated with numerous abnormalities of varying severity such as protrusion of part of the stomach and/or small intestines into the chest cavity (diaphragmatic hernia), unusual facial features, and abnormalities of the fingers and toes. The number and severity of symptoms and physical findings will vary greatly from case to case.

Some symptoms such as diaphragmatic hernia, underdevelopment of the lungs, and cardiac defects may result in life-threatening complications during the newborn (neonatal) period.

Approximately 89 percent of all infants with Fryns syndrome have diaphragmatic hernia of varying degrees of severity. Lung hypoplasia and deformity of the lobes of the lungs also occurs in most cases. In some cases, affected infants may also have an abnormally small upper chest (thorax) and abnormal accumulation of milky fluid (chyle) in the thorax (chylothorax). Cases of Fryns syndrome in which affected infants do not have diaphragmatic hernia are considered less severe.

Infants with Fryns syndrome also have characteristic facial features that give the face a coarse appearance. These features include an abnormally small jaw (micrognathia) that may be displaced father back than normal (retrognathia); a broad, flat nasal bridge; an abnormally wide mouth (macrostomia); and incomplete closure of the roof of the mouth (cleft palate). In addition, affected infants may also have cloudy lenses of the eyes (corneal clouding); malformation (dysplasia) of the outer ears (pinnae) with underdeveloped lobes; an abnormal groove in the upper lip (cleft lip); a large, upturned nose; and a short, broad neck.

Another characteristic symptom of Fryns syndrome is underdevelopment of the tips of the fingers and toes (distal digit or acral hypoplasia). Affected infants may have underdeveloped or absent nails, abnormally short bones in the tips of the fingers and toes (terminal phalanges), and permanently flexed fingers (camptodactyly).

Affected infants may also have various abnormalities affecting the central nervous system. In approximately 50 percent of cases, Dandy-Walker malformation may be present. Dandy-Walker malformation is a rare malformation of the brain characterized by an abnormally enlarged space at the back of the brain (cystic 4th ventricle) that interferes with the normal flow of cerebrospinal fluid through the openings between the ventricle and other parts of the brain. In many cases, an abnormal cystic growth consisting of dilated lymph vessels beneath the skin in the neck area (cystic hygroma) may be present. Affected infants may also exhibit absence of the thick band of nerve fibers that connects the left and right hemispheres of the brain (agenesis of the corpus callosum), accumulation of excessive cerebrospinal fluid in the skull (hydrocephalus), and absence of a structure of the brain (rhinecephalon) associated with the sense of smell (arrhinencephaly). For more information on these disorders, choose “Hydrocephalus” “Dandy Walker” and “Agenesis of Corpus Callosum” as your search terms in the Rare Disease Database.)

Approximately 55 percent of infants with Fryns syndrome exhibit congenital heart (cardiac) defects including atrial and ventricular septal defects (VSDs and ASDs). These septal defects are the most common structural heart defects. ASDs are characterized by an abnormal opening in the fibrous partition (septum) that separates the two upper chambers (atria) of the heart. VSDs are characterized by an abnormal opening in the septum that divides the heart’s two lower chambers (ventricles).

Skeletal abnormalities may be present in some infants with Fryns syndrome including abnormal side-to-side curvature of the spine (scoliosis), extra ribs, and (osteochondrodysplasia).

Some infants with Fryns syndrome may have abnormalities of the genitourinary system. Females may exhibit malformation of the uterus with unusual “horn-shaped” branches (bicornuate uterus) and underdeveloped ovaries. Males may experience failure of one or both testes to descend into the scrotum (cryptorchidism) and placement of the urinary opening on the underside of the penis (hypospadias). Kidney (renal) abnormalities may also be present including cysts in the kidneys and malformation (dysplasia) of the kidneys.

Digestive abnormalities secondary to diaphragmatic hernia may also occur in some infants with Fryns syndrome including twisting (malrotation) of the intestines, protrusion of part of the intestines through an abnormal opening near the umbilical cord (omphalocele), esophageal atresia, and/or imperforate anus. Esophageal atresia is a condition in which the tube that carries food from the mouth to the stomach (esophagus) ends in a pouch instead of connecting to the stomach. Imperforate anus is a rare condition in which a thin covering (membrane) blocks the anal opening or the passage that connects the anus and the lowest part of the large intestine (rectum) fails to develop.

Causes
Fryns syndrome is inherited as an autosomal recessive trait. Human traits, including the classic genetic diseases, are the product of the interaction of two genes, one received from the father and one from the mother.

In recessive disorders, the condition does not occur unless an individual inherits the same defective gene for the same trait from each parent. If an individual receives one normal gene and one gene for the disease, the person will be a carrier for the disease, but usually will not show symptoms. The risk of transmitting the disease to the children of a couple, both of whom are carriers for a recessive disorder, is 25 percent. Fifty percent of their children risk being carriers of the disease, but generally will not show symptoms of the disorder. Twenty-five percent of their children may receive both normal genes, one from each parent, and will be genetically normal (for that particular trait). The risk is the same for each pregnancy.

Parents of several individuals with the disorder have been closely related (consanguineous). If both parents carry the same disease gene, then there is a higher-than-normal risk that there children may inherit the two genes necessary for the development of the disorder.

Early Signs and Symptoms of Multiple Sclerosis

Multiple Sclerosis early signs, symptoms can be in such a mild form as not to be initially detectable.

MS early symptoms and signs appear at the onset of the disease, usually between the ages of 20 and 40. MS early symptoms and signs vary in duration and severity from one individual to the other and at different times in the same individual.

The most recurrent are:

  • walking difficulties
  • the sensation of having a weak or numb limb
  • cold or tingling feet
  • facial pain (Neuralgia)
  • blurred vision

Less common MS early symptoms include:

  • lack of coordination
  • cognitive difficulties
  • slurred speech
  • sudden onset of paralysis

As the disease progresses other symptoms can appear.

MS Pain
MS pain is the type of pain that affects the central nervous system and pain syndromes are common amongst MS patients. Almost 50% of MS patients suffer s from chronic pain. There are several types of MS pain. The main types are:

  • Neuralgia, which is a stabbing pain in the face; it is usually treated with anticonvulsants.
  • Dysesthesias, which is a burning, aching body pain; it is usually treated with anticonvulsants and sometimes with antidepressants which act on the nervous central system.
  • Lhermitte sign, which is a brief, electric shock like sensation that runs down the spine and is caused by bending the neck forward or backward. It is controlled by means of a soft collar.
  • A chronic sensation of ‘pins and needles’, which is treated similarly to acute Dysesthesias.
  • Muscle spasm and cramps, which are treated with anti-inflammatory drugs.
  • Back and skeleton pains, which are treated with heat, massage and physical therapy.

National Congenital Cytomegalovirus Awareness Month

Cytomegalovirus (CMV) is a common virus that infects people of all ages and is usually harmless to people with a healthy immune system. Most people have been exposed to CMV at some point in their lifetime without realizing it. It is estimated that 50-80% of adults in the United States have been infected with CMV by the time they reach 40 years old. Most infections with CMV are “silent” or asymptomatic, meaning most people who are infected with CMV have no signs or symptoms. Once CMV is in a person’s body, it stays there for life. no signs or symptoms occurs when a pregnant woman is exposed to CMV and the CMV passes from the pregnant woman to her unborn child, causing birth defects and developmental disabilities.

Acquired CMV infection is when a person is infected with CMV after birth, during childhood or adulthood.

Acquired CMV
Most healthy people with an acquired CMV infection will generally have few, if any, symptoms or complications from the infection. Because infections among healthy persons are common and typically asymptomatic, efforts to prevent transmission among healthy children and adults are not necessary.

At-Risk Populations
CMV can cause serious problems for people with weakened immune systems (immunocompromised) due to organ transplants, HIV/AIDS infection, chemotherapy, and medications such as glucocorticoids, cytostatics, antibodies, drugs acting on immunophilins, as well as other drugs.

In children and adults with organ transplants, CMV infections are linked with rejection or malfunction of the transplant.

In immunocompromised people, CMV can attack specific organs. Types and symptoms of CMV infections include, but are not exclusive/limited to:

  • Esophagus (CMV esophagitis)
  • Stomach or intestines (CMV gastroenteritis) – Diarrhea, swallowing difficulties or pain, and ulcerations with bleeding
  • Eye (CMV retinitis) – Blindness, floaters in the eye, and visual impairment
  • Lung (CMV pneumonia) – Pneumonia with impaired oxygen uptake (hypoxia)
  • Brain – Coma, encephalitis with behavioral changes, and seizures

Arthritis Awareness

Arthritis is very common but is not well understood. Actually, “arthritis” is not a single disease; it is an informal way of referring to joint pain or joint disease. There are more than 100 different types of arthritis and related conditions. People of all ages, sexes and races can and do have arthritis, and it is the leading cause of disability in America. Nearly 53 million adults and 300,000 children have some type of arthritis. It is most common among women and occurs more frequently as people get older.

Common arthritis joint symptoms include swelling, pain, stiffness and decreased range of motion. Symptoms may come and go. They can be mild, moderate or severe. They may stay about the same for years, but may progress or get worse over time. Severe arthritis can result in chronic pain, inability to do daily activities and make it difficult to walk or climb stairs. Arthritis can cause permanent joint changes. These changes may be visible, such as knobby finger joints, but often the damage can only be seen on X-ray. Some types of arthritis also affect the heart, eyes, lungs, kidneys and skin as well as the joints.

There are different types of arthritis:

Degenerative Arthritis
Osteoarthritis is the most common type of arthritis. When the cartilage – the slick, cushioning surface on the ends of bones – wears away, bone rubs against bone, causing pain, swelling and stiffness. Over time, joints can lose strength and pain may become chronic. Risk factors include excess weight, family history, age and previous injury (an anterior cruciate ligament, or ACL, tear, for example).

When the joint symptoms of osteoarthritis are mild or moderate, they can be managed by:

  • balancing activity with rest
  • using hot and cold therapies
  • regular physical activity
  • maintaining a healthy weight
  • strengthening the muscles around the joint for added support
  • using assistive devices
  • taking over-the-counter (OTC) pain relievers or anti-inflammatory medicines
  • avoiding excessive repetitive movements

If joint symptoms are severe, causing limited mobility and affecting quality of life, some of the above management strategies may be helpful, but joint replacement may be necessary.

Osteoarthritis can prevented by staying active, maintaining a healthy weight, and avoiding injury and repetitive movements.

Inflammatory Arthritis
A healthy immune system is protective. It generates internal inflammation to get rid of infection and prevent disease. But the immune system can go awry, mistakenly attacking the joints with uncontrolled inflammation, potentially causing joint erosion and may damage internal organs, eyes and other parts of the body. Rheumatoid arthritis and psoriatic arthritis are examples of inflammatory arthritis. Researchers believe that a combination of genetics and environmental factors can trigger autoimmunity. Smoking is an example of an environmental risk factor that can trigger rheumatoid arthritis in people with certain genes.

With autoimmune and inflammatory types of arthritis, early diagnosis and aggressive treatment is critical. Slowing disease activity can help minimize or even prevent permanent joint damage. Remission is the goal and may be achieved through the use of one or more medications known as disease-modifying antirheumatic drugs (DMARDs). The goal of treatment is to reduce pain, improve function, and prevent further joint damage.

Infectious Arthritis
A bacterium, virus or fungus can enter the joint and trigger inflammation. Examples of organisms that can infect joints are salmonella and shigella (food poisoning or contamination), chlamydia and gonorrhea (sexually transmitted diseases) and hepatitis C (a blood-to-blood infection, often through shared needles or transfusions). In many cases, timely treatment with antibiotics may clear the joint infection, but sometimes the arthritis becomes chronic.

Metabolic Arthritis
Uric acid is formed as the body breaks down purines, a substance found in human cells and in many foods. Some people have high levels of uric acid because they naturally produce more than is needed or the body can’t get rid of the uric acid quickly enough. In some people the uric acid builds up and forms needle-like crystals in the joint, resulting in sudden spikes of extreme joint pain, or a gout attack. Gout can come and go in episodes or, if uric acid levels aren’t reduced, it can become chronic, causing ongoing pain and disability.

Diagnosing Arthritis
Arthritis diagnosis often begins with a primary care physician, who performs a physical exam and may do blood tests and imaging scans to help determine the type of arthritis. An arthritis specialist, or rheumatologist, should be involved if the diagnosis is uncertain or if the arthritis may be inflammatory. Rheumatologists typically manage ongoing treatment for inflammatory arthritis, gout and other complicated cases. Orthopaedic surgeons do joint surgery, including joint replacements. When the arthritis affects other body systems or parts, other specialists, such as ophthalmologists, dermatologists or dentists, may also be included in the health care team.

Huntington’s Disease

Huntington’s disease (HD) is an inherited brain disorder that results in the progressive loss of both mental faculties and physical control. Symptoms usually appear between the ages of 30 to 50, and worsen over a 10 to 25 year period. Ultimately, the weakened individual succumbs to pneumonia, heart failure or other complications.

Everyone has the HD gene but it is those individuals that inherit the expansion of the gene who will develop HD and perhaps pass it onto each of their children.

Presently, there is no cure. Although medications can relieve some symptoms, research has yet to find a means of slowing the deadly progression of HD.

Current estimates are that 1 in every 10,000 Americans has HD and more than 250,000 others are at-risk of having inherited it from a parent. Once thought a rare disease, HD is now considered one of the more common hereditary diseases.

Every person who inherits the expanded HD gene will eventually develop the disease.
Over time, HD affects the individual’s ability to reason, walk and speak

Symptoms Include:

  • Personality changes, mood swings and depression
  • Forgetfulness and impaired judgment
  • Unsteady gait and involuntary movements
  • Slurred speech and difficulty in swallowing

The Scope of HD
Approximately 30,000 Americans have HD, but the devastating effects of the disease touch many more. Within a family, multiple generations may have inherited the disease. Those at-risk may experience tremendous stress from the uncertainty and sense of responsibility. In the community, lack of knowledge about HD may keep friends and neighbors from offering social and emotional support to the family, fostering unnecessary isolation.

The Huntington’s Disease Society of America (HDSA) has a nationwide network that provides support and referrals for individuals with HD and their families.

Genetic Testing for HD
Individuals can be tested for the gene that causes HD. The test may be used to confirm a diagnosis of HD, but may also be used as a predictive test before symptoms arise. Some individuals at-risk for HD feel that it is important to know whether they carry the gene. Others ultimately choose not to be tested. While the actual procedure is simple, the decision to have the test is not. HDSA recommends that persons wishing to undergo presymptomatic testing for HD do so at one of our HDSA Centers of Excellence, or at a testing center with specific training in working with HD. A list of these testing centers is available from HDSA

HD affects both sexes and all races and ethnic groups around the world.
The Decision to test is highly personal and should never be rushed or forced.

Who is At-Risk?
Every child of a parent with HD has a  50/50 chance of inheriting the expanded gene that causes the disease. If the child has not inherited this expanded gene, he or she will never develop the disease and cannot pass it on to their children.

Genetic Information Nondiscrimination Act of 2008 (GINA)
The Genetic Information Nondiscrimination Act (GINA) protects people from discrimination by health insurers and employers on the basis of their DNA information. This federal law also enables individuals to take part in research studies without fear that their DNA information might be used against them by health insurers or in the workplace.

However, GINA protections do not extend to long term care, disability or life insurance policies. Anyone contemplating testing should first consider adding one or more of these types of policies before starting the testing process.

Advocacy
HDSA advocacy works to advance legislation and policy to improve the lives of HD families by raising awareness about HD in the U.S. Congress, by promoting legislation, policy and regulations that would help individuals in the HD community, by educating Federal agencies about HD, and by partnering and collaborating with national organizations that have common goals. Learn more at www.hdsa.org/advocacy.

Join us in the fight against HD
YOU can help HDSA in our efforts to end HD and provide resources for those who must face this disease daily. Both funds and volunteers are needed. Contact the HDSA National Office to find out how YOU can help.

HD does not skip generations; if one does not inherit the expanded gene, one cannot pass it on

An End To HD?
In 1993, researchers identified the gene that causes HD. Since then, research has moved quickly towards developing treatments and, ultimately, a cure. HDSA supports the goals of clinical and basic research at leading research facilities globally.

Clinical and observational trials are an important way you can help to sustain the momentum of HD research and move potential new therapies through the approval process. Visit the Research section of the HDSA website for more information and to find a trial in your area. There are opportunities for all HD family members – gene positive, at-risk, gene negative, and caregivers – to participate.

About HDSA
The Huntington’s Disease Society of America (HDSA) is the largest 501(C)(3) non-profit volunteer organization dedicated to improving the lives of everyone affected by Huntington’s disease. Founded in 1968 by Marjorie Guthrie, wife of folk legend Woody Guthrie who lost his battle with HD, the Society works tirelessly to provide family services, education, advocacy and research to provide help for today, hope for tomorrow to the more than 30,000 people diagnosed with HD and the 250,000 at-risk in the United States.

Where to find help
You are not alone in facing HD. HDSA has developed a nationwide network that includes Chapters and Affiliates, HDSA Centers of Excellence, Support Groups, and Social Workers that are ready to assist you with referrals and resources in your area. To learn more, please visit www.hdsa.org or call 888-HDSA-506.

Research worldwide is working to unlock the mystery of HD and find a cure