Category Archives: Symptoms

Myasthenia Gravis

What is myasthenia gravis?
Myasthenia gravis is a chronic autoimmune neuromuscular disease characterized by varying degrees of weakness of the skeletal (voluntary) muscles of the body. The name myasthenia gravis, which is Latin and Greek in origin, literally means “grave muscle weakness.” With current therapies, however, most cases of myasthenia gravis are not as “grave” as the name implies. In fact, most individuals with myasthenia gravis have a normal life expectancy.

The hallmark of myasthenia gravis is muscle weakness that increases during periods of activity and improves after periods of rest. Certain muscles such as those that control eye and eyelid movement, facial expression, chewing, talking, and swallowing are often, but not always, involved in the disorder. The muscles that control breathing and neck and limb movements may also be affected.

What causes myasthenia gravis?
Myasthenia gravis is caused by a defect in the transmission of nerve impulses to muscles. It occurs when normal communication between the nerve and muscle is interrupted at the neuromuscular junction—the place where nerve cells connect with the muscles they control. Normally when impulses travel down the nerve, the nerve endings release a neurotransmitter substance called acetylcholine. Acetylcholine travels from the neuromuscular junction and binds to acetylcholine receptors which are activated and generate a muscle contraction.

In myasthenia gravis, antibodies block, alter, or destroy the receptors for acetylcholine at the neuromuscular junction, which prevents the muscle contraction from occurring. These antibodies are produced by the body’s own immune system. Myasthenia gravis is an autoimmune disease because the immune system—which normally protects the body from foreign organisms—mistakenly attacks itself.

What is the role of the thymus gland in myasthenia gravis?
The thymus gland, which lies in the chest area beneath the breastbone, plays an important role in the development of the immune system in early life. Its cells form a part of the body’s normal immune system. The gland is somewhat large in infants, grows gradually until puberty, and then gets smaller and is replaced by fat with age. In adults with myasthenia gravis, the thymus gland remains large and is abnormal. It contains certain clusters of immune cells indicative of lymphoid hyperplasia—a condition usually found only in the spleen and lymph nodes during an active immune response. Some individuals with myasthenia gravis develop thymomas (tumors of the thymus gland). Thymomas are generally benign, but they can become malignant.

The relationship between the thymus gland and myasthenia gravis is not yet fully understood. Scientists believe the thymus gland may give incorrect instructions to developing immune cells, ultimately resulting in autoimmunity and the production of the acetylcholine receptor antibodies, thereby setting the stage for the attack on neuromuscular transmission.

What are the symptoms of myasthenia gravis?
Although myasthenia gravis may affect any voluntary muscle, muscles that control eye and eyelid movement, facial expression, and swallowing are most frequently affected. The onset of the disorder may be sudden and symptoms often are not immediately recognized as myasthenia gravis.

In most cases, the first noticeable symptom is weakness of the eye muscles. In others, difficulty in swallowing and slurred speech may be the first signs. The degree of muscle weakness involved in myasthenia gravis varies greatly among individuals, ranging from a localized form limited to eye muscles (ocular myasthenia), to a severe or generalized form in which many muscles—sometimes including those that control breathing—are affected. Symptoms, which vary in type and severity, may include a drooping of one or both eyelids (ptosis), blurred or double vision (diplopia) due to weakness of the muscles that control eye movements, unstable or waddling gait, a change in facial expression, difficulty in swallowing, shortness of breath, impaired speech (dysarthria), and weakness is the arms, hands, fingers, legs, and neck.

Who gets myasthenia gravis?
Myasthenia gravis occurs in all ethnic groups and both genders. It most commonly affects young adult women (under 40) and older men (over 60), but it can occur at any age.

In neonatal myasthenia, the fetus may acquire immune proteins (antibodies) from a mother affected with myasthenia gravis. Generally, cases of neonatal myasthenia gravis are temporary and the child’s symptoms usually disappear within 2-3 months after birth. Other children develop myasthenia gravis indistinguishable from adults. Myasthenia gravis in juveniles is uncommon.

Myasthenia gravis is not directly inherited nor is it contagious. Occasionally, the disease may occur in more than one member of the same family.

Rarely, children may show signs of congenital myasthenia or congenital myasthenic syndrome. These are not autoimmune disorders, but are caused by defective genes that produce abnormal proteins instead of those which normally would produce acetylcholine, acetylcholinesterase (the enzyme that breaks down acetylcholine), or the acetylcholine receptor and other proteins present along the muscle membrane.

How is myasthenia gravis diagnosed?
Because weakness is a common symptom of many other disorders, the diagnosis of myasthenia gravis is often missed or delayed (sometimes up to two years) in people who experience mild weakness or in those individuals whose weakness is restricted to only a few muscles.

The first steps of diagnosing myasthenia gravis include a review of the individual’s medical history, and physical and neurological examinations. The physician looks for impairment of eye movements or muscle weakness without any changes in the individual’s ability to feel things. If the doctor suspects myasthenia gravis, several tests are available to confirm the diagnosis.

A special blood test can detect the presence of immune molecules or acetylcholine receptor antibodies. Most patients with myasthenia gravis have abnormally elevated levels of these antibodies. Recently, a second antibody—called the anti-MuSK antibody—has been found in about 30 to 40 percent of individuals with myasthenia gravis who do not have acetylcholine receptor antibodies. This antibody can also be tested for in the blood. However, neither of these antibodies is present in some individuals with myasthenia gravis, most often in those with ocular myasthenia gravis.

The edrophonium test uses intravenous administration of edrophonium chloride to very briefly relieve weakness in people with myasthenia gravis. The drug blocks the degradation (breakdown) of acetylcholine and temporarily increases the levels of acetylcholine at the neuromuscular junction. Other methods to confirm the diagnosis include a version of nerve conduction study which tests for specific muscle “fatigue” by repetitive nerve stimulation. This test records weakening muscle responses when the nerves are repetitively stimulated by small pulses of electricity. Repetitive stimulation of a nerve during a nerve conduction study may demonstrate gradual decreases of the muscle action potential due to impaired nerve-to-muscle transmission.

Single fiber electromyography (EMG) can also detect impaired nerve-to-muscle transmission. EMG measures the electrical potential of muscle cells when single muscle fibers are stimulated by electrical impulses. Muscle fibers in myasthenia gravis, as well as other neuromuscular disorders, do not respond as well to repeated electrical stimulation compared to muscles from normal individuals.

Diagnostic imaging of the chest, using computed tomography (CT) or magnetic resonance imaging (MRI), may be used to identify the presence of a thymoma.

Pulmonary function testing, which measures breathing strength, helps to predict whether respiration may fail and lead to a myasthenic crisis.

How is myasthenia gravis treated?
Today, myasthenia gravis can generally be controlled. There are several therapies available to help reduce and improve muscle weakness. Medications used to treat the disorder include anticholinesterase agents such as neostigmine and pyridostigmine, which help improve neuromuscular transmission and increase muscle strength. Immunosuppressive drugs such as prednisone, azathioprine, cyclosporin, mycophenolate mofetil, and tacrolimus may also be used. These medications improve muscle strength by suppressing the production of abnormal antibodies. Their use must be carefully monitored by a physician because they may cause major side effects.

Thymectomy, the surgical removal of the thymus gland (which often is abnormal in individuals with myasthenia gravis), reduces symptoms in some individuals without thymoma and may cure some people, possibly by re-balancing the immune system. Thymectomy is recommended for individuals with thymoma. Other therapies used to treat myasthenia gravis include plasmapheresis, a procedure in which serum containing the abnormal antibodies is removed from the blood while cells are replaced, and high-dose intravenous immune globulin, which temporarily modifies the immune system by infusing antibodies from donated blood. These therapies may be used to help individuals during especially difficult periods of weakness. A neurologist will determine which treatment option is best for each individual depending on the severity of the weakness, which muscles are affected, and the individual’s age and other associated medical problems.

What are myasthenic crises?
A myasthenic crisis occurs when the muscles that control breathing weaken to the point that ventilation is inadequate, creating a medical emergency and requiring a respirator for assisted ventilation. In individuals whose respiratory muscles are weak, crises—which generally call for immediate medical attention—may be triggered by infection, fever, or an adverse reaction to medication.

What is the prognosis?
With treatment, most individuals with myasthenia can significantly improve their muscle weakness and lead normal or nearly normal lives. Some cases of myasthenia gravis may go into remission—either temporarily or permanently—and muscle weakness may disappear completely so that medications can be discontinued. Stable, long-lasting complete remissions are the goal of thymectomy and may occur in about 50 percent of individuals who undergo this procedure. In a few cases, the severe weakness of myasthenia gravis may cause respiratory failure, which requires immediate emergency medical care.

Chiropractic Health Awareness: Get Vertical

Whatever your condition, there are steps you can take to improve your back health by getting vertical: standing up and exercising more. Moving helps increase circulation to your back, which in turn brings much needed nutrients to the disc spaces and soft tissues.

With this in mind, here are 7 tips to help you “Get Vertical”:

  1. Take a stand at work
    A health buzz word circulating for the past several months is “sitting disease.” Sitting too much all day, every day of the year has a serious impact our health. One study showed a significant increase in people’s mood and a decrease in their back pain when they stood for just one extra hour a day.If you work at the office all day, invest in a stand up desk. You can find simple, inexpensive models easily through an internet search.

    If a standing desk is not your style, aim to stand up and stretch at least every 20 minutes.

  2. Make an appointment with a physical therapist
    Physical therapy can have a profound effect on your spine health if you find the right therapist.
  3. Find a walking buddy
    Set a standing walking “date” with someone in your office or in your neighborhood who has a similar walking pace as you. Hopefully you’ll connect with someone who also has similar interests, so the time you spend walking will fly by.
  4. Or, just place a treadmill in your TV room
    Have you ever added up how many hours you actually spend watching your favorite TV series? Consider investing in a treadmill and walking at a moderate pace while you watch your favorite shows. You’ll be so engrossed in the plot lines you won’t even notice you’re moving!
  5. Adopt a dog
    Studies show dog owners tend to be happier and healthier than non-dog owners. It doesn’t take a study to show that if you have a dog, you’ll have to walk more. If you walk slowly, consider adopting an older dog who won’t demand a lot of time or energy, but who will just appreciate a home, and a low key walk every day. If you have more energy, go for a younger, more active dog to keep you on your toes.
  6. Or, offer to walk your neighbor’s dog
    If adopting a dog is too much responsibility, take notice of the harried mother down the street, or the elderly couple next door with dogs. Offering to walk their dogs even once or twice a week could be as big of a help to them as it is to your spine.
  7. Clean your own home
    If you really hate formal exercise, don’t discount how much you move when you clean your home and tend your own yard. Scrubbing the shower, mopping the floor, raking the leaves, pushing a mower all count as exercise. All these tasks accomplish the same things as formal exercises: they challenge your muscles and get your heart pumping.

Rett Syndrome Awareness

What is Rett Syndrome?
Rett syndrome is a postnatal neurological disorder seen almost always in girls, but can be rarely seen in boys. It is not a degenerative disorder.

Rett syndrome is caused by mutations on the X chromosome on a gene called MECP2. There are more than 200 different mutations found on the MECP2 gene. Most of these mutations are found in eight different “hot spots.”

Rett syndrome strikes all racial and ethnic groups, and occurs worldwide in 1 of every 10,000 to 23,000 female births.

Rett syndrome causes problems in brain function that are responsible for cognitive, sensory, emotional, motor and autonomic function. These can include learning, speech, sensory sensations, mood, movement, breathing, cardiac function, and even chewing, swallowing, and digestion.

Rett syndrome symptoms appear after an early period of apparently normal or near normal development until six to eighteen months of life, when there is a slowing down or stagnation of skills. A period of regression then follows when she loses communication skills and purposeful use of her hands. Soon, stereotyped hand movements such as handwashing, gait disturbances, and slowing of the normal rate of head growth become apparent. Other problems may include seizures and disorganized breathing patterns while she is awake. In the early years, there may be a period of isolation or withdrawal when she is irritable and cries inconsolably. Over time, motor problems may increase, but in general, irritability lessens and eye contact and communication improve.

Rett syndrome can present with a wide range of disability ranging from mild to severe. The course and severity of Rett syndrome is determined by the location, type and severity of her mutation and X-inactivation. Therefore, two girls of the same age with the same mutation can appear quite different.


Testing and Diagnosis
Rett syndrome is most often misdiagnosed as autism, cerebral palsy, or non-specific developmental delay. In the past, making the correct diagnosis called not only for a long list of diagnostic tests and procedures to rule out other disorders, but it also took from months to years waiting to confirm the diagnosis as new symptoms appeared over time. Today, we have a simple blood test to confirm the diagnosis. However, since we know that the MECP2 mutation is also seen in other disorders, the presence of the MECP2 mutation in itself is not enough for the diagnosis of Rett syndrome. Diagnosis requires either the presence of the mutation (a molecular diagnosis) or fulfillment of the diagnostic criteria (a clinical diagnosis, based on signs and symptoms that you can observe) or both. Below is a list of labs to share with your ordering physician that can do the MECP2 sequencing + deletion analysis, and the list of diagnostic criteria.

October is Down Syndrome Awareness Month

Down Syndrome Awareness Month is chance to spread awareness, advocacy and inclusion throughout the community. During the month of October, we celebrate  individuals with Down syndrome and make people aware of their abilities and accomplishments

What Is Down Syndrome?
In every cell in the human body there is a nucleus, where genetic material is stored in genes.  Genes carry the codes responsible for all of our inherited traits and are grouped along rod-like structures called chromosomes.  Typically, the nucleus of each cell contains 23 pairs of chromosomes, half of which are inherited from each parent. Down syndrome occurs when an individual has a full or partial extra copy of chromosome 21.

This additional genetic material alters the course of development and causes the characteristics associated with Down syndrome. A few of the common physical traits of Down syndrome are low muscle tone, small stature, an upward slant to the eyes, and a single deep crease across the center of the palm – although each person with Down syndrome is a unique individual and may possess these characteristics to different degrees, or not at all.

How Common is Down Syndrome?
One in every 691 babies in the the United States is born with Down syndrome, making Down syndrome the most common genetic condition. Approximately 400,000 Americans have Down syndrome and about 6,000 babies with Down syndrome are born in the United States each year.

What Causes Down Syndrome?
Regardless of the type of Down syndrome a person may have, all people with Down syndrome have an extra, critical portion of chromosome 21 present in all or some of their cells.  This additional genetic material alters the course of development and causes the characteristics associated with Down syndrome.

The cause of nondisjunction is currently unknown, but research has shown that it increases in frequency as a woman ages.  However, due to higher birth rates in younger women, 80% of children with Down syndrome are born to women under 35 years of age.

There is no definitive scientific research that indicates that Down syndrome is caused by environmental factors or the parents’ activities before or during pregnancy.

The additional partial or full copy of the 21st chromosome which causes Down syndrome can originate from either the father or the mother. Approximately 5% of the cases have been traced to the father.

When Was Down Syndrome Discovered?
For centuries, people with Down syndrome have been alluded to in art, literature and science. It wasn’t until the late nineteenth century, however, that John Langdon Down, an English physician, published an accurate description of a person with Down syndrome. It was this scholarly work, published in 1866, that earned Down the recognition as the “father” of the syndrome. Although other people had previously recognized the characteristics of the syndrome, it was Down who described the condition as a distinct and separate entity.

In recent history, advances in medicine and science have enabled researchers to investigate the characteristics of people with Down syndrome. In 1959, the French physician Jérôme Lejeune identified Down syndrome as a chromosomal condition. Instead of the usual 46 chromosomes present in each cell, Lejeune observed 47 in the cells of individuals with Down syndrome. It was later determined that an extra partial or whole copy of chromosome 21 results in the characteristics associated with Down syndrome. In the year 2000, an international team of scientists successfully identified and catalogued each of the approximately 329 genes on chromosome 21. This accomplishment opened the door to great advances in Down syndrome research.

World Heart Day

World Heart Day

World Heart Day was founded in 2000 to inform people around the globe that heart disease and stroke are the world’s leading causes of death, claiming 17.3 million lives each year.

World Heart Day is an annual event which takes place on 29 September every year. Each year’s celebrations have a different theme, reflecting key issues and topics relating to heart health. The theme this year is: Heart-Healthy Environments.

For more information please visit the World Heart Federation’s Website!