Category Archives: Symptoms

Batten Disease

What is Batten Disease?
Batten disease is named after the British pediatrician who first described it in 1903. Also known as Spielmeyer-Vogt-Sjogren-Batten disease, it is the most common form of a group of disorders called Neuronal Ceroid Lipofuscinoses (or NCL).

Although Batten disease is usually regarded as the Juvenile form of NCL, it has now become the term to encompass all forms of NCL.

The forms of NCL are classified by age of onset and have the same basic cause, progression and outcome but are all genetically different, meaning each is the result of a different gene. Over time, affected children suffer mental impairment, worsening seizures, and progressive loss of sight and motor skills. Eventually, children with Batten disease/NCL become blind, bedridden and unable to communicate, and, presently, it is always fatal.

Batten disease is not contagious or, at this time, preventable.

The History of Neuronal Ceroid Lipofuscinosis
The first probable instances of this condition were reported in 1826 in a Norwegian medical journal by Dr. Christian Stengel, who described three affected siblings in a small mining community in Norway. Although no pathological studies were performed on these children, the clinical descriptions are so succinct that the diagnosis of the Spielmeyer-Sjogren (juvenile) type is fully justified. More fundamental observations were reported by F.E. Batten in 1903, and by Vogt in 1905, who performed extensive clinicopathological studies on several families. Retrospectively, these papers disclose that the authors grouped together different types of the disease.

Furthermore Batten, at least for some time, insisted that the condition he described was distinctly different from Tay-Sachs Disease, the prototype of a neuronal lysosomal disorder now identified as GM2-Gangliosidosis type A. Around the same time, Spielmeyer reported detailed studies on three siblings, suffering from the Spielmeyer-Sjogren (juvenile) type, which led him to the very firm statement that this malady is not related to Tay-Sachs Disease. Subsequently, however, the pathomorphological studies of Schaffer made these authors change their minds to the extent that they reclassified their respective observations as variants of Tay-Sachs Disease, which caused confusion for about 50 years.

In 1913-14, M. Bielschowsky delineated the Late Infantile form of NCL. However, all forms were still thought to belong in the group of “familial amaurotic idiocies,” of which Tay-Sachs was the prototype.

In 1931, the Swedish psychiatrist and geneticist, Torben Sjogren, presented 115 cases with extensive clinical and genetic documentation and came to the conclusion that the disease which we now call the Spielmeyer-Sjogren (juvenile) type is genetically separate from Tay-Sachs.

Departing from the careful pathomorphological observations of Spielmeyer, Hurst, Sjovall and Ericsson, Zeman and Alpert made a determined effort to document the previously suggested pigmentary nature of the neuronal deposits in certain types of storage disorders. Simultaneously, Terry, Korey and Svennerholm demonstrated a specific ultrastructure and biochemistry for Tay-Sachs Disease, and these developments led to the distinct identification, and separation, of the NCLs from Tay-Sachs Disease by Zeman and Donahue. At that time, it was proposed that the Late Infantile (Jansky-Bielschowsky), the Juvenile (Spielmeyer-Vogt), and the adult forms (Kufs) were quite different from Tay-Sachs Disease with respect to chemical pathology and ultrastructure, and also different from other forms of sphingolipidoses. Subsequently, it was shown by Santavuori and Haltia that an Infantile form of NCL exists, which Zeman and Dyken had included with the Jansky-Bielschowsky type.

What are the forms of NCL/Batten Disease?
There are four main types of NCL, including two forms that begin earlier in childhood and a very rare form that strikes adults. The symptoms are similar but the forms become apparent at different ages and progress at different rates.

  • Infantile NCL (Santavuori-Haltia disease) begins between about 6 months and 2 years of age and progresses rapidly. Affected children fail to thrive and have abnormally small heads (microcephaly). Also typical are short, sharp muscle contractions called myoclonic jerks. Initial signs of this disorder include delayed psychomotor development with progressive deterioration, other motor disorders, or seizures. The Infantile form has the most rapid progression and children live into their mid-childhood years.
  • Late Infantile NCL (Jansky-Bielschowsky disease) begins between ages 2 and 4. The typical early signs are loss of muscle coordination (ataxia) and seizures along with progressive mental deterioration. This form progresses rapidly and ends in death between ages 8 and 12.
  • Juvenile NCL (Batten disease) begins between the ages of 5 and 8. The typical early signs are progressive vision loss, seizures, ataxia or clumsiness. This form progresses less rapidly and ends in death in the late teens or early 20s, although some may live into their 30s.
  • Adult NCL (Kufs disease or Parry disease) generally begins before the age of 40, causes milder symptoms that progress slowly, and does not cause blindness. Although age of death is variable among affected individuals, this form does shorten life expectancy.

There are six additional diseases included in the Batten disease/NCL group:

  • Finnish Late Infantile – identified in Finland
  • Variant Late Infantile – identified in Costa Rica, South America, Portugal and other nations
  • Turkish Late Infantile – identified in Turkey
  • Northern Epilepsy/ERMP – Epilepsy with Mental Retardation – identified in Finland
  • Variant Juvenile – identified in Germany and USA
  • Congenital/CTSD – identified in Europe

A more precise chart of the forms of Batten disease is below:

Chart: Forms of Batten Disease
Form Initials  Gene  Age of Onset 
Infantile INCL CLN1 6 mos. — 2 yrs.
Late Infantile LINCL CLN2 2 — 4 yrs.
Juvenile JNCL CLN3 5 — 7 yrs.
Adult ANCL CLN4 25 — 40 yrs.
Finnish Late Infantile fLINCL CLN5 2 — 4 yrs.
Variant Late Infantile vLINCL CLN6 3 — 5 yrs.
Turkish Late Infantile tLINCL CLN7 2 — 4 yrs.
Northern Epilepsy EPMR CLN8 5 — 10 yrs.
Variant Juvenile vJNCL CLN9 5 — 7 yrs.
Congenital CTSD CLN10 Birth — 2 yrs.

How many people have these disorders?
Batten disease/NCL is relatively rare, occurring in an estimated 2 to 4 of every 100,000 births in the United States, but no one really knows how many affected children there may be in North America or anywhere else in the world. The diseases have been identified worldwide. Although NCLs are classified as rare diseases, they often strike more than one person in families that carry the defective gene.

How are NCLs inherited?
Childhood NCLs are autosomal recessive disorders; that is, they occur only when a child inherits two copies of the defective gene, one from each parent. When both parents carry one defective gene, each of their children faces a one in four chance of developing NCL. At the same time, each child also faces a one in two chance of inheriting just one copy of the defective gene. Individuals who have only one defective gene are known as carriers, meaning they do not develop the disease, but they can pass the gene on to their own children.

Adult NCL may be inherited as an autosomal recessive (Kufs) or, less often, as an autosomal dominant (Parry) disorder. In autosomal dominant inheritance, all people who inherit a single copy of the disease gene develop the disease. As a result, there are no unaffected carriers of the gene.

What causes these diseases?
Symptoms of Batten disease/NCLs are linked to a buildup of substances called lipopigments in the body’s tissues. These lipopigments are made up of fats and proteins. Their name comes from the technical word lipo, which is short for “lipid” or fat, and from the term pigment, used because they take on a greenish-yellow color when viewed under an ultraviolet light microscope.

The lipopigments build up in cells of the brain and the eye, as well as in skin, muscle, and many other tissues. Inside the cells, these pigments form deposits with distinctive shapes that can be seen under an electron microscope. Some look like half-moons (or comas) and are called curvilinear bodies; others look like fingerprints and are called fingerprint inclusion bodies; and still others resemble gravel (or sand) and are called granual osmophilic deposits (GRODS).

Batten Disease - What causes these diseases?

These deposits are what doctors look for when they examine a skin sample to diagnose Batten disease. The diseases cause the death of neurons (specific cells found in the brain, retina and central nervous system). The reason for neuron death is still not known.

How are these disorders diagnosed?
Because vision loss is often an early sign, Batten disease/NCL may first be suspected during an eye exam. An eye doctor can detect a loss of cells within the eye that occurs in the three childhood forms of Batten disease/NCL. However, because such cell loss occurs in other eye diseases, the disorder cannot be diagnosed by this sign alone.

Often an eye specialist/ophthalmologist or other physician who suspects Batten disease/NCL may refer the child to a neurologist, a doctor who specializes in diseases of the brain and nervous system. In order to diagnose Batten disease/NCL, the neurologist needs the patient’s medical history and information from various laboratory tests. Below are pictures of the retina showing the telltale signs of Batten disease.

Batten Disease and Ophthalmology

Batten Disease-How are these disorders diagnosed?

In the Fundus (the interior surface of the eye), the pigmentary changes in the macula are initially slight, and so it is easy to miss them, especially when no pupil dilation is applied and the fundus is not examined carefully. Fluorescent angiography demonstrates the pigmentary changes more clearly (Prammer, et al., 1978- ); sometimes fluorescence can be observed, leaking out of the retinal vessels. The density of the fine particuled pigmentations is slight around the macula and increases towards the periphery (Gottinger, et al., 1971- ). Dyken (1976) also mentions peripheral depigmentation. The pigment epithelium frequently has a granular “pepper and salt” appearance (see Fig. 1); sometimes there is a characteristic “bull’s eye” maculopathy (see Fig. 2, Fig. 3). The papilla becomes paler and the retinal arterioles seem more obviously constricted and extended (Fig. 4, Fig. 5). The peripheral retina varies in appearance, from normal to showing pigment-epithelial (pigmented cell layer just outside the retina) abnormalities (Spalton, et al., 1980- ). Later, peripheral pigment is often seen in the form of bone corpuscular pigment (see Fig. 6). Cataracts develop later in the course of the disease.

Diagnostic tests used for Batten disease/NCLs include:
Skin or Tissue Sampling: The doctor examines a small piece of tissue under an electron microscope. The powerful magnification of the microscope helps the doctor spot typical NCL deposits. These deposits are found in many different tissues, including skin, muscle, conjunctiva, rectal and others. Blood can also be used. See inclusion body pictures above.

Electroencephalogram or EEG: An EEG uses special patches placed on the scalp to record electrical currents inside the brain. This helps doctors see telltale patterns in the brain’s electrical activity that suggest a patient has seizures.

Electrical Studies of the Eyes: These tests, which include visual-evoked responses (VER) and electro-retinagrams (ERG), can detect various eye problems common in childhood Batten disease/NCLs.

Brain Scans: Imaging can help doctors look for changes in the brain’s appearance. The most commonly used imaging technique is computed tomography (CT), which uses x-rays and a computer to create a sophisticated picture of the brain’s tissues and structures. A CT scan may reveal brain areas that are decaying in NCL patients. A second imaging technique that is increasingly common is magnetic resonance imaging, or MRI. MRI uses a combination of magnetic fields and radio waves, instead of radiation, to create a picture of the brain.

Enzyme Assay: A recent development in the diagnosis of Batten disease/NCL is the use of enzyme assays that look for specific missing lysosomal enzymes for Infantile and Late Infantile only. This is a quick and easy diagnostic test.

Genetic/DNA Testing: Each “form” of Batten disease is the result of a different gene. Genes for eight of the ten forms have been identified. Testing for these is available for diagnosis as well as carrier and prenatal status.

Is there any treatment?
As yet, no specific treatment is known that can halt or reverse the symptoms of Batten disease/NCL. However, seizures can be reduced or controlled with anticonvulsant drugs, and other medical problems can be treated appropriately as they arise. At the same time, physical and occupational therapy may help patients retain function as long as possible.

BDSRA helps scientists by fostering awareness, promoting more research, providing samples and information, and by funding research that is directed towards understanding all forms of Batten disease and development of therapies.

Support and encouragement can help children and families cope with the profound disability and losses caused by NCLs. The Batten Disease Support and Research Association enables affected children, adults and families to share common concerns and experiences.

Meanwhile, scientists pursue medical research that will someday yield an effective treatment.

Caregiver Support

Whether you are caring for the elderly or a loved one with a disAbility, most every caregiver should surround their life with resources and relief.

These resources will not only keep you feeling refreshed and renewed, but they’ll help you connect with others, who may have, or be currently experiencing similar lifestyles. In recognizing the different support options available, you’ll find yourself actively combating the chances of caregiver burnout and achieving the best quality care possible for your loved one.

Support is within reach. You just have to know where to look.

Caregiver Support Groups
You may be surprised to learn that a quick internet search can connect you with entire communities of caregivers. Sure, there are plenty of self-help articles and tips and tricks out there, but the value of an honest forum and communal support goes miles.

Find a caregiver forum in your state or region and consider the benefits of sounding off with other members. Bounce ideas and successes off of one another. Share your wisdom and experiences. Ask questions and seek answers.

Forums:

  • provide perspective
  • highlight industry products
  • connect like-minded individuals
  • create a canvas for ongoing conversation
  • offer new tips and tricks
  • and so much more

A forum is a great foundation to replenish your optimism and hope as a caregiver. You may even turn online connections into real life friendships and accountability. And what better way to grow as a caregiver than to do it in the company and strength of a community of caregivers?

Financial Aid
Many caregivers spend upwards of 20 hours per week giving care. It’s no wonder finances and employment opportunities can sometimes be difficult to balance. Don’t count yourself out, though.

Seek education on grants and financial aid. There are many benefits for caregivers such as mobility vehicle loans and income tax return incentives. A little homework can save you money in the long run. Getting ahead on your finances can provide tremendous relief.

Fitness
Explore activities you can experience with your loved one. From adaptive sports to a traditional walk around the block, exercise is a great way to proactively deal with stress and clear the mind.

To take it one step further, consider joining a league in your area. If you’ve become a member of an online forum, ask around about local gatherings and activities or take initiative to start one on your own. The positivity and energy can be contagious for all involved.

Family and Friends
Don’t go it alone. The strongest caregivers know when it’s time to ask for help.

It’s healthy to reach out to those you trust and your family and friends can be awesome support groups. Invite them to step up and come beside you as you provide care for your loved ones and don’t be afraid to walk them through a day in your life. The more they know about your situation and your needs the better they’ll be able to assist in the journey of you and your loved one.

Managing your own stress can make the ultimate difference in the life of the loved one you care for. In caring for you, you’re caring for them.

What is Trisomy 9

The name “Trisomy” means three (“tri”) copies of a chromosome (“somy”). Unlike most individuals, people that have any form of Trisomy are born with a whole or partial third copy of a chromosome, instead of the expected two. For example, a child that has a third copy of the number 21th chromosome, rather then just the pair, have a common disorder called Down’s Syndrome. When the 18th chromosome has been affected, then that better known as Edward’s Syndrome, and again the 13th is Patau’s Syndrome. Trisomy 9 refers to the number 9th chromosome being affected, though due to being so rare it has not yet been given another name.

Duplication resulting in Trisomy 9p

A duplication is an extra copy of a portion of a chromosome. In this case, the extra portion is from chromosome 9. This may also be referred to as a partial Trisomy 9 since what is extra is part of chromosome 9. The extra chromosome 9 material can be present in the middle of one of the arms of chromosome 9 or may be attached to the end of another whole copy of chromosome 9. Some individuals are diagnosed with Trisomy 9p which is where the chromosomes have duplicated the “p” arm, or Trisomy 9q where the “q” arm has been affected.

Mosaic Trisomy 9

The term “mosaic” means that there is a mixture of cell types among the analysed cells. An individual with mosaic Trisomy 9 has some cells with an extra copy of Chromosome 9. Others can also have Mosaic 9 which is where the same thing applies though only with the expected number of chromosomes (two copies of chromosome 9)

Translocation resulting in Trisomy 9p

 Translocations (t) are rearrangements of chromosome material that involve two or more chromosomes. Translocations arise when two chromosomes “break” and switch material. Often, when a translocation arises in a parent it is “balanced”. This means that there is no apparent loss or gain of chromosome material. All the chromosome material that should be there is usually present but is rearranged.

Emphysema Awareness

Chronic obstructive pulmonary disease (COPD) is one of the leading cause of death in the U.S. and affects more than 12 million Americans.  COPD – which includes emphysema and chronic bronchitis – is a term used to describe the obstruction of airflow.

COPD cannot be cured, but it can be treated. Early detection and diagnosis is the key to successful management of this chronic disease.

Emphysema is a long-term, progressive disease of the lungs that primarily causes shortness of breath due to over-inflation of the alveoli (air sacs in the lung). In people with emphysema, the lung tissue involved in exchange of gases (oxygen and carbon dioxide) is impaired or destroyed. Emphysema is included in a group of diseases called chronic obstructive pulmonary disease or COPD (pulmonary refers to the lungs). Emphysema is called an obstructive lung disease because airflow on exhalation is slowed or stopped because over-inflated alveoli do not exchange gases when a person breaths due to little or no movement of gases out of the alveoli.

Emphysema changes the anatomy of the lung in several important ways. This is due to in part to the destruction of lung tissue around smaller airways. This tissue normally holds these small airways, called bronchioles, open, allowing air to leave the lungs on exhalation. When this tissue is damaged, these airways collapse, making it difficult for the lungs to empty and the air (gases) becomes trapped in the alveoli.

Normal lung tissue looks like a new sponge. Emphysematous lung looks like an old used sponge, with large holes and a dramatic loss of “springy-ness” or elasticity. When the lung is stretched during inflation (inhalation), the nature of the stretched tissue wants to relax to its resting state. In emphysema, this elastic function is impaired, resulting in air trapping in the lungs. Emphysema destroys this spongy tissue of the lung and also severely affects the small blood vessels (capillaries of the lung) and airways that run throughout the lung. Thus, not only is airflow affected but so is blood flow. This has dramatic impact on the ability for the lung not only to empty its air sacs called alveoli (pleural for alveolus) but also for blood to flow through the lungs to receive oxygen.

10 Early Signs and Symptoms of Alzheimer’s

Alzheimer’s is a brain disease that causes a slow decline in memory, thinking and reasoning skills. There are 10 warning signs and symptoms. Every individual may experience one or more of these signs in different degrees. If you notice any of them, please see a doctor.

  • Memory loss that disrupts daily life
    One of the most common signs of Alzheimer’s is memory loss, especially forgetting recently learned information. Others include forgetting important dates or events; asking for the same information over and over; increasingly needing to rely on memory aids (e.g., reminder notes or electronic devices) or family members for things they used to handle on their own.
  • Challenges in planning or solving problems
    Some people may experience changes in their ability to develop and follow a plan or work with numbers. They may have trouble following a familiar recipe or keeping track of monthly bills. They may have difficulty concentrating and take much longer to do things than they did before.
  • Difficulty completing familiar tasks at home, at work or at leisure
    People with Alzheimer’s often find it hard to complete daily tasks. Sometimes, people may have trouble driving to a familiar location, managing a budget at work or remembering the rules of a favorite game.
  • Confusion with time or place
    People with Alzheimer’s can lose track of dates, seasons and the passage of time. They may have trouble understanding something if it is not happening immediately. Sometimes they may forget where they are or how they got there.
  • Trouble understanding visual images and spatial relationships
    For some people, having vision problems is a sign of Alzheimer’s. They may have difficulty reading, judging distance and determining color or contrast, which may cause problems with driving.
  • New problems with words in speaking or writing
    People with Alzheimer’s may have trouble following or joining a conversation. They may stop in the middle of a conversation and have no idea how to continue or they may repeat themselves. They may struggle with vocabulary, have problems finding the right word or call things by the wrong name (e.g., calling a “watch” a “hand-clock”).
  • Misplacing things and losing the ability to retrace steps
    A person with Alzheimer’s disease may put things in unusual places. They may lose things and be unable to go back over their steps to find them again. Sometimes, they may accuse others of stealing. This may occur more frequently over time.
  • Decreased or poor judgment
    People with Alzheimer’s may experience changes in judgment or decision-making. For example, they may use poor judgment when dealing with money, giving large amounts to telemarketers. They may pay less attention to grooming or keeping themselves clean.
  • Withdrawal from work or social activities
    A person with Alzheimer’s may start to remove themselves from hobbies, social activities, work projects or sports. They may have trouble keeping up with a favorite sports team or remembering how to complete a favorite hobby. They may also avoid being social because of the changes they have experienced.
  • Changes in mood and personality
    The mood and personalities of people with Alzheimer’s can change. They can become confused, suspicious, depressed, fearful or anxious. They may be easily upset at home, at work, with friends or in places where they are out of their comfort zone.